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The purpose of this paper is to prove the n-category pasting theorem. The theorem, which 

asserts that the categorical operation of pasting is well defined, has not previously been proved, 

mainly because of the lack of a sufficient formalization of the diagrams on which pasting 

operates. The paper develops a combinatorial treatment of these diagrams and proves the pasting 

theorem. 

Introduction 

With the rise in interest in n-categories, at least for n = 2, the operation of pasting 
has been recognized as a valuable tool for working with several different composi- 

tions. Typically, pasting is used to specify a cell by giving a pasting diagram (see 
e.g. (1) below). The pasting theorem says that such a cell is well defined - the several 

different sequences of compositions which the diagram could be interpreted as 

representing yield the same cell. 

Pasting was introduced by Benabou in his treatment of bicategories [2]. Walters 

in his thesis [ 121 used pasting and in a 1971 lecture in Sydney [ 131 he emphasized 

the importance of the pasting theorem, which he stated as part of an alternative 

axiomatics for %-categories. Later, pasting played an important role in the joint 

work of Street and Walters [ll]. 

An expository description of pasting can be found in the review of Kelly and 

Street [6] which also includes a description of the pasting theorem. Despite a sug- 

gested technique, and a number of attempts, no proof of the theorem has appeared. 

It seems that the theorem has never been proved, chiefly because of the lack of a 

sufficient formalization of the notion of pasting diagram. This paper introduces a 

formal theory of pasting diagrams and investigates their properties. Once the 

appropriate diagrams have been isolated, a combinatorial analysis shows that cer- 

tain w-categories constructed from the diagrams are free o-categories and the 

pasting theorem follows as an easy corollary (Observation 15). 
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The results reported here were described to the Sydney Category Seminar in 1966 

and the Louvain-La-Neuve International Category Theory Meeting in 1987. Since 

then, Power has developed a graph-theoretic treatment of the 2-category case [7] 

and has produced a preliminary version of the 3-category case. Schanuel [8] has 

begun yet another formulation of the 2-category case. 

The author intends to write a modified and more conceptual version of the 

2-category case, but the general n-category case is presented here because it is re- 

quired for applications to computer science and to coherence theorems which will 

be pursued in subsequent papers. 

1. Diagrams 

In category theory, diagrams are used in at least two senses: to present the data 

for the calculation of some limit or colimit, and to define a cell as a composite of 

other cells. In what follows we deal exclusively with the latter usage. 

A diagram in a category has been defined to be a graph morphism from some 

graph into the underlying graph of the category [l]. In 2-category theory, pasting 

diagrams like 

1 
A +A A- 

(the equality of which expresses one of the triangular equations of an adjunction) 

play an important role. If a diagram in a 2-category were to be a 2-graph morphism 

[3] from some 2-graph into the underlying 2-graph of the 2-category, then the left- 

hand side of (1) would not be a diagram (although the right-hand side would be a 

diagram). 

Street [9], recognizing this difficulty, introduced computads. A computad 8 is 

a graph 19 1 together with a second graph structure whose edges are called 2-cells 

and whose vertices are elements of the free category on 18 1. Futhermore, in the 

second graph structure, two vertices can be connected by an edge only if they share 

the same domain and codomain as elements of the free category on I B /. Street 

defined the underlying computad of a 2-category in which a 2-cell from the 2-cate- 

gory appears between every possible factorization of its domain and codomain. A 

diagram in a 2-category may be taken to be a computad morphism into the under- 

lying computad of the 2-category. 

We take the view that the above use of graphs and computads defines a diagram 

by a parametrization. However, a parametrizing object is usually in some sense 
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‘loop free’ or ‘non-singular’ and there is no such requirement above. So, for exam- 

ple, the definitions allow 

to occur as a parametrizing object and hence a similar square of morphisms forms 

a diagram in a category. It is not at all clear what the composite of such a diagram 

should be. 

In Section 2 we introduce pasting schemes. A loop-free pasting scheme is an 

appropriate parametrizing object for a diagram in an n-category. A realization of 

a loop-free pasting scheme in a particular n-category C is the map which defines the 

parametrization and is given by specifying a k-cell of C for each k-dimensional ele- 

ment of the pasting scheme. We call a realization appropriate if it respects domains 

and codomains. A well-formed pasting scheme is the parametrizing object for a 

composable diagram - sometimes referred to as a ‘leg’ in a diagram in an ordinary 

category. The n-category pasting theorem states that a well-formed pasting scheme 

with a given appropriate realization, determines a unique composite as follows. 

Suppose that A is a well-formed loop-free pasting scheme and that r is an approp- 

riate realization of A in some cu-category C. We will see that the collection of well- 

formed subpasting schemes of A forms an o-category P(A) (Theorem 12) and that 

the freeness of this o-category (Theorem 13) gives a bijection between appropriate 

realizations of A in C and o-functors from B(A) to C. Finally, A itself is a cell in 

9’(A) and its image under the cu-functor corresponding to r is the composite of the 

diagram specified by A and r. 

2. Pasting schemes 

In this section we set down the technical details needed in order to be precise 

about diagrams like (1) above. Such a diagram will be determined by a realization 

of a pasting scheme in a category. A pasting scheme will be a graded set (Ai)iEw, 

where for each i, Ai represents the set of i-cells in the diagram. The actual arrange- 

ment of the cells relative to one another will be determined by two collections of 

relations Ei, Bj : Ai -+ Aj which may be thought of as describing which j-cells are at 

the ‘end’, respectively ‘beginning’, of each of the i-cells. 

Let A = (Aj)i~w be a graded set, E:, i, je CO, jli, a collection of relations with Ej 

a relation between the sets Ai and Ai. Let X be a subgraded set of A of dimension 

n. Write Ek(X)i= {ye/Ii: there exists XE?~, xE:y} and E(X) for E”(X). If EJ, Bi 

are two such collections of relations, let RI be the relation between Ai and A, given 
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by xRfy when there exists a sequence x=x,,xz,...,xj=y of elements of A satis- 
fying xkD:xk+i for k=l,2,...,j-1 and Dt=Et or Bt. 

We will often position the grading subscript on the relation writing ,E,(X) rather 
than E(X),. The relation ,Ej is called finitary when, for any x~A;, E;(x) is finite. 

In what follows, the EJ will be ‘end’ relations and the Bj ‘beginning’ relations 
and we have a duality: If P is a proposition, then dual,, P stands for the proposi- 
tion obtained from P be replacing all occurrences of Ek by Bk and vice versa. 

A pasting scheme (A, E, B) is a graded set (Ai) together with finitary relations 
Ej, Bj, j~i, such that 

(i) Ej is a relation between Ai and Aj; 
(ii) Ej is the identity relation on Ai; 

(iii) for k>O and any XEAI, there exists yEAk_i with xEi_, y; 
(iv) for k<n, wE:x if and only if there exists u, u such that wE~_,uE~-‘x and 

wE;_,uB;-‘x; 
(v) if wE~_,zE~-‘x, then either wE:x or there is a u with wB~_,vE~-‘x 

and dually (notice that there are four dual forms of condition (v)). 
We will allow A to ambiguously denote either the pasting scheme or its graded set. 
Informally, condition (iii) says that every k-cell ends at at least one k - 1 cell, and 

dually begins at at least one k- 1 cell. Condition (iv) ensures that low dimensional 
ends occur between higher dimensional ends - see for instance Q E E(q) in Example 
1 below. Finally, condition (v) ensures that a cell’s beginnings and ends ‘close up’ 
and that their orientations agree: 

. 

c> 
* , rather than i-1 or [l]. 

. . . . 

Example 1. The diagram 

is a representation of the pasting scheme (A, E, B) given by 

A, = {P,Q,RS}, A, = {u, U,X,Y,Z), 

A, = {E,V), A, = 0, k>2, 

E: = {(G ~1, (rl, v>> B: = {(G &)v(rl, ~‘11 

E: = {(G uh 0~~1, (rl, z>> B: = {(Gx),(E,Y),(~~,~)} 

E: = {(rl, Q)) B: = {(e,R)} 
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E: = {<u, u), (u,o), (x,x), (Y,Y), kz)) B; = {(w u), (o,o), 6% xl, (Y, Y), (z, z>> 
E:, = {<u, Q), (u, 3, (x, RI, (Y, Q), (z, S>> B:, = {(w PI, (0, RI, (x>P), (Y, RI, k Q>> 

E: = IV’, PI, (Q, Q), UC RI, (S 91 BE = ((8 PI, (Q, Q), W, RI, CS S>> 

In a pasting scheme A, define aA (written as a when there is no danger of con- 
fusion) as follows: for any k, and for any a, b EAT, say a a b if there is a sequence 

a=ao,al ,..., aj=b, j>O, 

of elements of Ak with, for all i<j, Ek_i(ai)fl Bk_r(ai+,)#O. As usual, if X is a 
subgraded set of A, we write ak(X) for {b E A: there exists x E X,, b a x}, and if 
X is n-dimensional, a(X) for a”(X). 

A pasting scheme A is said to have no direct loops when, for any k and for any 
a, b E Ak, B(a) tl E(a) = {a} and a a b implies B(a) tl E(b) = 0. 

If A is a pasting scheme and X a finite subgraded set of A, define the domain 
of X, dom X by X-E(X) and the codomain of X, cod X by X-B(X). 

Lemma 2. If A is a finite, k-dimensional pasting scheme with no direct loops, then 
dom A is a (k - l)-dimensional graded set. 

Proof. The domain of A is at most (k - I)-dimensional since (dom A)k = 
A, - Ek(Ak) = 0. To see that dom A is (k- 1)-dimensional choose some a0 E Ak and 
some yoe Bk_,(ao). If yoe dom A, it can only be because yoe E(a,) for some 
a, EAT. Now choose any y, E B,_,(ar), and repeat. Since A has no direct loops, 
ai #aj for i# j and so, since Ak is finite, we must eventually locate a y, E 
(dom A)k-l. 0 

Theorem 3. If A is a finite pasting scheme with no direct loops, then 

dom dom A = dom cod A. 

Proof. Notice that 

dom dom A = (A - E(A)) - E(A - E(A)) = A - (E(A) U E(A - E(A))), 

dom cod A = (A - B(A)) - E(A - B(A)) = A - (B(A) U E(A - B(A))), 

so it suffices to show that E(A) U E(A -E(A)) = B(A) U E(A - B(A)), which is clear 
in dimensions greater than or equal to dim A = n say. 

‘c' Suppose xeE(A), x of dimension ken. If xeB(A), then XCRHS so sup- 
pose xe B(A). By pasting scheme condition (iv) there exists u. with u,Ez-‘x (see 
diagram overleaf). If o. E A - B(A), then XE RHS. If u. $ A - B(A), then there must 
be a w. with w~B~_,u,E~-~ x whence by the dual,, of condition (v) there exists 
u1 E E(wo) with ur Et-’ x. Repeating, we eventually obtain U,EA - B(A) and 
XE E(u,). 
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Suppose XE E(A - E(A)), say o,E$-’ x with u. EA - E(A) and suppose x6 B(A) 

(second diagram above). As before, if u. EA - B(A), then XE RHS; otherwise we 

apply condition (v) until we obtain some u, EA - B(A) with XE E(o,). 

‘1’ The converse inclusion is precisely the dual,, of the above. q 

3. Well-formed pasting schemes 

We have shown that finite pasting schemes with no direct loops have sensible 

notions of domain and codomain which satisfy the basic equation dom dom * 

dom cod. If a finite pasting scheme parametrizes a composable diagram, then its 

highest dimensional elements must agree in orientation. In this section we describe 

well-formed pasting schemes - those in which the arrangements of the highest 

dimensional cells in the scheme, and in all of its domains and codomains, are com- 
patible. 

If A is a finite k-dimensional pasting scheme with no direct loops, write 

A if nzk, A if nzk, 
s,(A) = 

domk-“A if n<k 
t,,(A) = 

9 codk-n A if n<k. 

Notice that if n < k, then s,(A) and t,(A) are n-dimensional by Lemma 2. We call 

s,(A) the n-source of A, and t,(A) the n-target of A. 
A pasting scheme A of dimension k>O is called compatible when for any 

X,J’EAk, if XfJ’, then Bk_1(X)nB,_,(_Y)=@ and Ek_I(X)nE,_,(_Y)=ti. A Zero- 

dimensional pasting scheme is called compatible if it is a singleton. 

A subgraded set X of a pasting scheme A is called a subpasting scheme of A if 

y E R(X) implies y E X. 

A finite pasting scheme A with no direct loops is called well formed if 

(i) A is compatible; 

(ii) for all n?O, both s,(A) and t,,(A) are compatible subpasting schemes of A. 

Example 4. (i) The pasting scheme of Example 1 is well formed. 

(ii) Any finite chain of abutting arrows (head to tail and without loops) repre- 

sents a well-formed pasting scheme. 

(iii) All the diagrams involving 2-cells in [6] may be expressed as well-formed 

pasting schemes or assert the equality of two subdiagrams which may be expressed 

as well-formed pasting schemes. 
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Examples of well-formed pasting schemes of dimension greater than two appear 

in [5]. 

4. Loop-free pasting schemes 

Pasting schemes with no direct loops (and even well-formed pasting schemes with 

no direct loops), may still exhibit subtle looping behaviour like 

t 
X 

where the lines should be thought of as k-dimensional, the double arrow as k+ 1 

dimensional, x as k - 1 dimensional, and the ellipses (..e) as j-dimensional with j < k. 

In this section we set down the conditions (again rather technical) which eliminate 

such behaviour. Schemes satisfying these conditions are called loop free and in the 

remainder of this work we show that loop-free schemes and well-formed subschemes 

of them, behave as we expect pasting schemes should. 

A pasting scheme B is called loop free if 

(i) B has no direct loops; 

(ii) for any XE B, R(x) is well formed; 

(iii) for any k- 1 dimensional well-formed subpasting scheme A of B and any 

XE Bk with dom R(x)cA, 

(a) A r7 E(x) = 0; 

(b) if yeA and B(x)(l R(y)#0, then y~B(x); 

(iv) for any well-formed j-dimensional subpasting scheme A of B and any x E B 

with sj(R(X))CA, if u,u’ESj(R(X)) and, for some UeAj, uaAuaAu', then DE 

sj (R (X)) 
and dually. 

Remark 5. In [4] the author shows that condition (iii) is a consequence of the other 

three conditions. For now we include all four conditions because the presence of 

condition (iii) greatly simplifies the development of the theory. 

Example 6. All the well-formed pasting schemes of Example 4 are loop free. 

From now on we will consider only loop-free pasting schemes. In this and the next 

section we establish some of their properties. 
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Proposition 7. Suppose B is a loop-free pasting scheme, x E Bk, then 

dom R(x) = R(B,_,(x)). 

Proof. Firstly, dom R(x) = R(x) - E(x)c R(B,_,(x)) because, using pasting scheme 

condition (iv), R(x) = R(Bk_,(x)) U R(E,_,(x)) U (x} and, using pasting scheme 

condition (v), R(Ek_l(~))U {x} c R(B,_,(x))U E(x). But, since B has no direct 

loops, Bk_l(~)CR(x)-E(x)=dom R(x) and so R(B,_,(x))cR(dom R(x))= 

dom R(x) by loop free condition (ii). 0 

Proposition 8 (Pasting on). Suppose B is a loop-free pasting scheme. If A is a well- 
formed (k - 1)-dimensional subpasting scheme of B and x E Bk satisfies dom R(x) C 

A, then A U R(x) is a well-formed subpasting scheme of B. 

Proof. The scheme A U R(x) has only a single k-dimensional element and so is com- 

patible. Furthermore, 

+-,(A U R(x)) = A U R(x) - E(x) = (A - E(x)) U (R(x) - E(x)) 

=AUdomR(x)=A 

which is well formed. Hence for all n # k, s,(A U R(x)) is well formed. Further- 

more, since for j< k - 1 

ti(A U R(x)) = tj(tk-I(A U R(x))) = tj(skp I(A U R(x))), 

tn(A U R(x)) is well formed for all n #k, k - 1. 

It remains only to consider 

t&AUR(x))=AUR(x)-B(x)=(A-B(x))U(R(x)-B(X)) 

= (A - B(x)) U cod R(x) 

which is a subpasting scheme since cod R(x) and (using loop free condition (iii)) 

A - B(x) are subpasting schemes. Finally, tk_ I(A U R(x)) is compatible since sup- 

pose not, then there exists z, w~(t~_,(A U R(x)))~_~, zf w, such that there exists 

a E D,_,(z) fl Dk_Z(~), D = E or D = B. Now z, w are not both in A - B(x), since if 

it is (k- I)-dimensional, then it must be compatible being a subpasting scheme of 

a compatible (k- 1)-dimemional pasting scheme, nor in cod R(x) since it is com- 

patible. Hence, without loss of generality, suppose WEA - B(x) and zecod R(x). 

Now a $ E(x) since a E D(w) c A and A n E(x) = 0 so, by pasting scheme condition 

(v), there exists u~B,+*(x) with aEDk_2(u) contradicting the compatibility of 

A. 0 

Theorem 9. Suppose that Q is a loop-free pasting scheme and that A,B are well- 
formed subpasting schemes of Q with s,,(B) = t,(A), then A n B = s,(B). 

Proof. By induction over the dimension of A U B. 
If A U B is of dimension less than or equal to n, then s,(B) = t,(A) implies that 
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A=t,(A)=s,(B)=B=AnB as required. 

Suppose A U B is of dimension n + 1 and XEA n B but xes,(B), then A, B are 

both (n + 1)-dimensional since otherwise t,(A) =A or s,(B) = B, whence x$s,(A) = 

t,(B) implies x$A n B. Thus s,(B) = dom B and xbs,,(B) implies XE E(w) for some 

w~B,+i. 
In B, let Y= a,(w) = {y E B: y a w}. We show that there is an enumeration 

y,, y,, . . . ,y, of the elements of Y such that 

B,(yi)CdomBUE({yj:j<i})-B({yi:j<i}). 

Firstly, there exists a suitable y. since, for any ye Y, if B,(y) Q dom B it can only 

be because there is some y’ay with E,(y’) rl B,(y)#O. Repeating this, we obtain 

y” a y’a y etc. Since B is finite and has no direct loops, this process must terminate 

yielding some suitable y(@ = y. say. Similarly, there exists yr E Y- {yo} such that 

BAY,) C dom B U E(Yo) 

etc. Furthermore, because of the compatibility of Y (inherited from B), if 

B,(y;)CdomBUE((yj:j<i)), 

then 

B,(yi)CdomBUE({yj:j<i})-B({yj:j<i}). 

Now since dom R(y,) = R( B,(yo)) (Proposition 7) we can apply Proposition 8 to 

conclude that 

cod(domBUR(yo))=domBUR(yo)-B(yo)=domBUE(yo)-B(yo) 

is well formed. Proceeding inductively, 

B’ = dom BU E(Y)- B(Y) 

is well formed. 

Similarly, xb tn(A) implies x E B(z) for some z E A,, , and if 

z aA z' and u E E,(z’) fl cod A = E,(z’) n dom B, 

then u E B’ since u E B,(y) for some y E Y would give a direct loop. Thus 

B” = B’UB(r>,(z)U {z))-E(D~(z)U{Z}) 

is well formed as 

being loop free. 

above. But dom R(w)CB”, andxe E(w) rl B” which contradicts Q 
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Now suppose h > n + 1 and that for all well-formed A, B with A U B of dimension 

less than h and s,(B)=t,(A) we have A n B=s,(B). Let A, B be well-formed sub- 

pasting schemes of Q with A U B of dimension h. Once again, suppose x E A fI B but 

x@s,(B). We may suppose x to be of dimension less than h since, if not, choose 

any u E Eh_r(x), then u EA fl B, u is of dimension h - 1 and u @s,(B), so u will do. 

Let P=(aeAh: x~E(a)} and Q=(beBh: x~E(b)}. Put 

A’ = q_r(A)U E(a,PUP)- B(a,PUP), 

B’ =s~-~(B)UE(Q~QUQ)-B(Q~QUQ). 

Then A’,B’ are well formed and s,(B’)=s,(B)=t,(A)=t,(A’) but xeA’r7 B’, 
x$s,(B’) = t,(A’) and A’, B’ are of dimension less than h, contradicting the induc- 

tive hypothesis. 0 

5. Paring down well-formed schemes 

A pasting scheme A of dimension k> 0 is called strongly compatible when, for 

any x, y E Akr x# y implies B(x) n B(y) = 0 and E(x) fl E(y) = 0. A zero-dimensional 

pasting scheme is strongly compatible if it is a singleton. 

Proposition 10. Every loop-free well-formed pasting scheme is strongly compatible. 

Proof. Suppose that Q is a k-dimensional loop-free well-formed, pasting scheme. 

By way of contradiction, suppose w,z EAT, w#z, and aEE(w)nE(z). Let Y= 

a{w,z}. 
As in the proof of Theorem 9, dom Q U E(Y) - B(Y) =A say, is well formed. Fur- 

thermore, either B,_,(w)cA and B,_,(z)CA and hence domR(w)cA so, using 

Proposition 8, A’=A U E(w) - B(w) is well formed, or w E Y or z E Y (but not both); 

suppose without loss of generality WE Y and then let A’=A. Now in either case 

a EA’ (since aE E(w) and, because Q has no direct loops, for any y E Y U {w}, 

a $ B(y)) and B,_ 1(z) CA’, hence dom R(z) CA’, but a E E(z) contradicting Q being 

loop free. q 

Proposition 11 (Paring down). Suppose that Q is k-dimensional, loop free and well 
formed, and y E Qk satisfies dom R(y) C dom Q, then Q - B(y) is well formed. 

Proof. If Q- B(y) is (k- 1)-dimensional, then Q- B(y) = cod Q which is well 

formed, so suppose Q - B(y) is k-dimensional. Then Q - B(y) is compatible since 

Q is, and it is a subpasting scheme since, if not, then there exists aE B(y) fl R(z) for 

some z E Qk - ( y}. Furthermore, a@ E(z) since a E B(y) c dom Q, therefore a E R(w) 
for some WE Bk_r(z) whence w E dom Q or E(z2) etc. to obtain WE dom Q with 

aER(w), w~B~_r(z,.); but then Q being loop free implies w~B~_r(y) and z,#y 
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(because a $ R ( Ek_ , ( y)) but CI E R ( Ek_ , (2,))) which contradicts the compatibility 
of Q. 

Furthermore, 

cod(Q- B(y)) = Q- B(y)- B(Qk- {y>> 

= Q-MY)UWQI,-{YIN 

= Q- B(Qk) = cod Q 

is well formed and so s,(Q- B(y)), t,(Q - B(y)) are well formed for all n #k, k- 1. 
It remains only to show that sk_,(Q- B(y)) = dom(Q- B(y)) is a compatible 

pasting scheme. Now, 

dom(Q- WY)) = Q-B(y)- E(Qk- {Y>) 

= Q- E(Qk- (Y))- B(Y) 

= Q- E(Qk) U E(y) - B(y) (Proposition 10) 

=domQUE(y)-B(y) 

= cod(dom Q U R(y)) 

which is a compatible pasting scheme by Proposition 8. 0 

6. Categories of pasting schemes 

Well-formed pasting schemes parametrize ‘composable’ diagrams. If, in a loop- 
free pasting scheme, we have two well-formed subpasting schemes whose n-source 
and n-target match up, we should be able to paste them together to obtain another 
well-formed scheme. This is made precise in the following theorem. (For elementary 
definitions of a-categories and free o-categories the reader is referred to [lo].) 

Theorem 12. Suppose that S is a loop-free pasting scheme and 9 the collection of 
well-formed subpasting schemes of S, then (9, (Si, t;, U),,,) is an o-category. 

Proof. The elementary properties of Si and ti follow from their definition in terms 
of dom and cod and Theorem 3; identity, associativity and the middle four inter- 
change laws follow from analogous properties of union (for identity A C B implies 
A UB=B). 

For the other composition axioms suppose S,(B) = ti(A) for some A, B E 9. We 
prove by induction over the dimension of A U B that 

(a) Si(A UB)=Si(A), 
(b) Sj(AUB)=Sj(A)USj(B) forj>i, and 
(c) A U B is well formed. 
If A U B is of dimension less than or equal to i, then S,(B) = ti(A) implies A = B 

so (a), (b) and (c) follow. 
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Suppose A, B are well formed, A U B is of dimension h > i and that for all well- 

formed A,B with A U B of dimension less than h, si(B)=ti(A) implies (a), (b) 

and (c). 

(a) If h>i+l, then 

si(AUB)=si(Sh_i(AUB))=Si(dom(AUB)) 

= Si((A U B)- E(A U B)) 

= si((A - EC%) - E(B,)) U (B - E(B,) - E(-&))) 

=si((sh-I(A)-E(B~))U(~~-I(B)-E(A~))) 

=si(sh-i(A)Ush_i(B)) (sinceAnB=q(B)) 

= si(Sh _ 1 (A)) (by inductive hypothesis (a)) 

= Si(A). 

If h=i+l, then 

s,GJUB) =si((~h-l(A)-E(Bh))U(sh-l(B)-E(Ah))) 
= Si(A) (since si(B) - E(A,)Csi(A)). 

(b) If jz h, then 

sj(AUB)=AUB=sj(A)Usj(B). 

If j<h, then 

sj(AUB)=sj(s,_,(AUB))=sj(dom(AUB)) 

= sj(Sh-i(A)USh_i(B)) (as above) 

= Sj (Sh _ ,(A)) U Sj (sh _ 1(B)) (inductive hypothesis (b)) 

=sj(A)Usj(B). 

(c) A U B is a compatible pasting scheme since A and B are and Eh(A) n Eh(B) = 0 
and Bh(A) n Bh(B) = 0 (Theorem 9). Furthermore, if h > i + 1, then dom(A U B) = 
sh-l(A)UshP1(B) (by (b)), while if h=i+l, then dom(AUB)=si(A) (by (a)). In 

either case dom(A U B) is well formed. Similarly, using dual forms of (a) and (b), 

cod(A U B) is well formed. 0 

If S is a loop-free pasting scheme, then the o-category of Theorem 12 is called 

the w-category of components of S. The pasting theorem, which asserts that all 

strategies for composing cells in a ‘composable diagram’ in an o-category yield the 

same result, follows from the freeness of o-categories of components. 

Theorem 13. Suppose S is a loop-free pasting scheme, then the u-category of com- 
ponents of S is the free o-category generated by the R(x), XE S. 

Proof. The fact that the o-category of components of S is generated by the R(x), 

XE S, follows by induction. 

Suppose that A is a well-formed subpasting scheme of S of dimension k, XEA~ 
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and A #R(x). We show that for some j there exists yeAj, y$ R(x), with either 
A - B(y) and Sj_,(A) U R(y) well formed and j- 1 composable with composite A, 
or A - E(y) and tj_l(A) U R(y) well formed and j- 1 composable with composite 
A. 

Since A # R(x), there exists ye of maximum dimension say j, such that y. $ R(x). 
Furthermore, by part (iv) of the definition of loop-free, 

either aA tl R(x) = 0, or r>,{yo} fl R(x) = 0. 

Suppose a,{yo) fl R(x) = 0 (the other case follows dually), then any a,-minimal 
element of a,{yo} will do for y since sj_ ,(A) U R(y) is well formed (Proposition 
8) and A - B(y) is well formed (Proposition 11, Proposition 8 and Theorem 12). 

Freeness follows exactly as in [lo, Theorem 181. 0 

Remark 14. It is noteworthy that, despite our different context and greater gener- 
ality, Street’s proof [ 10, Theoren 181 generalizes with only notational modifications 
to our Theorem 13. 

7. The pasting theorem 

We have described loop-free pasting schemes which are the appropriate para- 
metrizing objects for diagrams in o-categories. Among these are the well-formed 
loop-free pasting schemes which are the appropriate parametrizing objects for com- 
posable diagrams. It remains to describe the parametrizations themselves and to 
establish that a well-formed loop-free pasting scheme which is the domain of a given 
parametrization in some o-category, determines a unique cell called the composite 
of the diagram in the o-category. These two tasks are interwoven. We proceed in- 
ductively. 

If C is an a-category write Ci for the set of i-cells of C and 1 C 1 i for the i-cate- 
gory consisting of the i-cells of C with the first i compositions. 

A realiz&ion (A,fi) of a pasting scheme A in an o-category C is a collection of 
functions fi:Aj-+Ci, i=O,l,..., which we will sometimes view as functions 
f, : Ai -+ C, into the underlying set of the w-category C. 

We write B(A) for the o-category of components of A - its elements are well- 
formed subpasting schemes of A (Theorem 12). The j-category IP(A)lj is the sub- 
o-category of P(A) whose elements are well-formed subpasting schemes of A of 
dimension less than or equal to j. For each k we have a function R( ) : Ak-+ 

j.Y(A)l, and functors (which we will not name) including Is’(A)lj in 19(A)lk, 

j<k. A realization (A,J) is said to be n-extendable when there exists a unique 
functor f: I,?P(A)l, + C such that the diagrams (of functions) 

PU)lk - PW. 

Ak fk 
*C 

commute for all k zs n. 
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Inductive definition. Any realization (A,fi) will be called zero-appropriate, and 

is zero-extendable (JO is already a functor IP(,4)10 + C). Suppose that every 

n-appropriate realization is n-extendable and suppose given an n-appropriate 

realization (AJ). Then we have 

A n+l 

We say that (A, A) is (n + 1 )-appropriate if s,, f, + I = fs,, R and t, f, + I = ft, R , whence, 

by the freeness of 9(A), (A,J;) is (n + I)-extendable. A realization is called ap- 
propriate if it is n-appropriate for all n. 

Thus a realization is nothing more than an assignment, to each n-dimensional ele- 

ment of a pasting scheme, of an n-cell in an o-category. A realization is appropriate 

if it respects Sk and tk - if it is categorically sensible. A diagram (A,fi) in an 

o-category C is a loop-free pasting scheme A together with an appropriate realiza- 

tion& : A; -+ Ci. A composable diagram in an o-category C is a well-formed loop- 

free pasting scheme A together with an appropriate realization fi : Ai -+ Ci. 
Furthermore, we have shown, using the freeness of B(A), that appropriate reali- 

zations are n-extendable for all n. Thus if (A,f;) is a composable diagram in C, 

then there is a unique functor f: 9(A) --f C which extends all the A (since 19(A)lk = 
P(A) for k = dim A < m). This establishes the bijection between appropriate realiza- 

tions of A in C and functors B(A) + C referred to in Section 1. 

Observation 15 (The pasting theorem). If A is an n-dimensional, well-formed loop- 

free pasting scheme then A E IS(A) Furthermore, appropriate realizations are 

extendable. Thus a composable diagram (A,fi) in an o-category C determines uni- 

quely, via f(A), a cell of C called the composite of (A,J;) (where f is the functor 

corresponding to the realization (A)). 

Remark 16. Two aspects of the pasting theorem deserve further comment: 

(i) It has long been assumed that the pasting theorem would be proved by an 

inductive argument over the structure of the diagram. This is indeed the case here 

but the simple induction, which occurs in the proof of the freeness part of Theorem 

13, has been omitted. 

(ii) The above inductive definition may seem surprisingly complicated. The com- 
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plications arise because the appropriateness of a realization of an IZ + 1 dimensional 
pasting scheme depends on the n-category pasting theorem - one must check that 
the n-source and n-target of each element of the scheme are sent to the n-source and 
n-target of the realization of the element. But it is the n-category pasting theorem 
which says that the sources and targets are sent to well-defined cells, and the n- 
category pasting theorem is equivalent to the statement “n-appropriate realizations 
are n-extendable”. 
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